
7

Transfer Joint Embedding for Cross-Domain
Named Entity Recognition

SINNO JIALIN PAN, ZHIQIANG TOH, and JIAN SU, Institute for Infocomm Research, Singapore

Named Entity Recognition (NER) is a fundamental task in information extraction from unstructured text.
Most previous machine-learning-based NER systems are domain-specific, which implies that they may
only perform well on some specific domains (e.g., Newswire) but tend to adapt poorly to other related
but different domains (e.g., Weblog). Recently, transfer learning techniques have been proposed to NER.
However, most transfer learning approaches to NER are developed for binary classification, while NER is
a multiclass classification problem in nature. Therefore, one has to first reduce the NER task to multiple
binary classification tasks and solve them independently. In this article, we propose a new transfer learning
method, named Transfer Joint Embedding (TJE), for cross-domain multiclass classification, which can fully
exploit the relationships between classes (labels), and reduce domain difference in data distributions for
transfer learning. More specifically, we aim to embed both labels (outputs) and high-dimensional features
(inputs) from different domains (e.g., a source domain and a target domain) into a unified low-dimensional
latent space, where 1) each label is represented by a prototype and the intrinsic relationships between
labels can be measured by Euclidean distance; 2) the distance in data distributions between the source and
target domains can be reduced; 3) the source domain labeled data are closer to their corresponding label-
prototypes than others. After the latent space is learned, classification on the target domain data can be
done with the simple nearest neighbor rule in the latent space. Furthermore, in order to scale up TJE, we
propose an efficient algorithm based on stochastic gradient descent (SGD). Finally, we apply the proposed
TJE method for NER across different domains on the ACE 2005 dataset, which is a benchmark in Natural
Language Processing (NLP). Experimental results demonstrate the effectiveness of TJE and show that TJE
can outperform state-of-the-art transfer learning approaches to NER.

Categories and Subject Descriptors: I.2.7 [Artificial Intelligence]: Natural Language Processing; I.2.6
[Artificial Intelligence]: Learning; H.2.8 [Database Management]: Data Mining

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Named entity recognition, transfer learning, multiclass classification

ACM Reference Format:
Pan, S. J., Toh, Z., and Su, J. 2013. Transfer joint embedding for cross-domain named entity recognition.
ACM Trans. Inf. Syst. 31, 2, Article 7 (May 2013), 27 pages.
DOI: http://dx.doi.org/10.1145/2457465.2457467

1. INTRODUCTION

Information extraction, which aims to automatically extract structured information
from unstructured or semi-structured text or Web pages, is an important technology
for many applications, such as information retrieval [Manning et al. 2008], question an-
swering [Kwok et al. 2001], financial analysis [Schumaker and Chen 2009], etc. Named
Entity Recognition (NER) is one of the fundamental tasks in information extraction.
The objective of NER is to identify and classify every word/term in text into predefined

Author’s address: Data Analytics Department, Institute for Infocomm Research, 1 Fusionopolis Way, #21-01
Connexis, South Tower, Singapore 138632; email: {jspan, ztoh, sujian}@i2r.a-star.edu.sg.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1046-8188/2013/05-ART7 $15.00

DOI: http://dx.doi.org/10.1145/2457465.2457467

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

7:2 S. J. Pan et al.

types of entities, such as persons, organizations, locations, etc., or “none-of-the-above”.
Most current NER systems are based on machine learning techniques, which reply
on a lot of labeled data for training predictive models. Usually, the labeled training
data contain documents and the corresponding tags (e.g., persons, organizations, or
“none-of-the-above”) to each term/word within the documents. Buidling models is an
expensive process requiring tedious effort on annotating training data. Furthermore,
due to different writing styles and lexicons used in different domains, a NER system
trained on one domain, for instance, Newswire, may not perform well on another do-
main, for instance, Weblog. As a result, adaptation techniques are highly desirable
for NER such that a NER system trained on one domain can adapt well to other do-
mains with little extra supervision. Transfer learning, which aims to enable systems
to extract and apply knowledge learned from previous tasks to a novel task, is such a
potential technology for cross-domain NER.

In the past few years, transfer learning has been studied in NER to reduce labeling
effort across different domains. Daumé III [2007] proposed a simple feature augmen-
tation method for NER. However, this method requires some labeled data available in
the target domain. In many real-world scenarios, it is more desirable if no additional
labeling effort is required to adapt NER systems across domains. Therefore, in this
article, we focus on the setting where there are no labeled data but a lot of unlabeled
data (documents without any tags to words/items) in the target domain for adaptation.
In this setting, several transfer learning methods have been proposed to NER [Jiang
and Zhai 2007; Wu et al. 2009]. These methods are based on bootstrapping, which can
be referred to as instance-based transfer learning methods [Pan and Yang 2010]. How-
ever, for cross-domain NER, the percentage of overlapping features across domains can
be very small. In this case, instance-based transfer learning methods may not work
well. Furthermore, these methods are developed for binary classification, requiring
multiple binary classifiers for each type of entities independently. Therefore, they may
suffer from 1) the relationships between different types of entities cannot be fully
exploited, and 2) when the number of entity-types is huge, the computational cost is
expensive.

In this article, we propose a new transfer learning method for cross-domain mul-
ticlass classification with application to NER.1 Specifically, we first embed labels (or
classes) into a low-dimensional latent space F . In this case, the relationships between
labels, for instance, similar or dissimilar, can be measured by the distance between
their corresponding label-prototypes in the latent space, for instance, close to or far
away from each other. Meanwhile, we embed high-dimensional inputs (features) from
the source and target domains into another low-dimensional latent space F ′, projected
onto which the distance between the source and target domain data can be reduced
and the original data structure can be preserved. Finally, a mapping is learned from
the new feature space F ′ to the label latent space F , such that the projected instances
are closer to their corresponding label-prototypes than others. In this way, classifica-
tion on unseen target domain data can be done with the simple nearest neighbor rule
in the label latent space. Furthermore, we propose two solutions based on different
optimization strategies. Note that, though in this article we use cross-domain NER

1Note that some researchers have shown that context information within sentences is useful for NER and
proposed to use sequential labeling methods for NER [Zhou and Su 2002; Finkel et al. 2005]. However, more
recently, some other researchers pointed out that the sequential labeling models may suffer from inability
on modeling nested named entities [Finkel and Manning 2009]. In this article, we focus on the cross-domain
problem and consider NER as a multiclass classification task instead of sequential labeling. In deed, based
on the outputs of a multiclass classifier, one can postuse a Vierbi parse [Rabiner and Juang 1986] to find the
valid sequence of entity types with the highest probability to achieve better performance.

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

Transfer Joint Embedding for Cross-Domain Named Entity Recognition 7:3

as an evaluation application, the proposed method is general for other cross-domain
multiclass classification applications.2

The rest of the article is organized as follows. In the following section, we first
review some related work and introduce preliminaries that are used in our proposed
method. In Section 3, we describe the problem statement and give an overview of the
proposed method. In Section 4, we present the proposed method, named Transfer Joint
Embedding (TJE), in detail. In Section 5, we demonstrate the effectiveness of TJE
through expensive experiments on the ACE 2005 dataset. Finally, in Section 6, we
conclude this work and discuss some future directions.

2. RELATED WORK AND PRELIMINARIES

2.1. Named Entity Recognition

Generally speaking, Named Entity Recognition (NER) consists of two subtasks [Nadeau
and Sekine 2007]: 1) Named Entity identification, and 2) Named Entity classification.
Named Entity identification is to identify whether a word/term is a named entity or
not, which can be referred to as a binary classification task. For the terms/words that
are already identified as entities, the goal of Named Entity Classification is to classify
them into predefined categories (different types of entities, e.g., persons, organizations
or locations, etc.). If we consider the tag “none-of-the-above” as an additional class, then
NER can be referred to as a unified multiclass classification problem, whose goal is to
classify each word/term into predefined types of entities or “none-of-the-above”.

Earlier NER systems mainly employed rule-based approaches such as handcrafted
rules and finite state patterns, such as the TLG system [Mikheev et al. 1998, 1999], the
SRA system [Aone et al. 1998], the LaSIE-II system [Humphreys et al. 1998] and the
NetOwl system [Krupka and Hausman 1998]. Rule-based NER systems can perform
well when the human-decided rules match the scenarios perfectly, but they are hard
to handle uncertainty. As annotated corpora become available, machine-learning ap-
proaches, such as Hidden Markov Models [Zhou and Su 2002], Support Vector Machines
(SVMs) [Isozaki and Kazawa 2002] and Conditional Random Fields [Finkel et al. 2005],
have been proposed to train classifiers or models from the annotated corpora for NER
automatically. Recently, machine-learning-based NER systems have shown their suc-
cess in NER, but most of them suffer from two main limitations: 1) the performance
of NER systems relies on a large number of labeled data for training, and 2) most
systems are domain-specific, which implies that a NER trained on one domain tends to
perform badly on other domains [Ciaramita and Altun 2005; Jiang and Zhai 2006]. In
order to reduce the effect for building NER systems on new domains, some researchers
have proposed to use transfer learning techniques to utilize labeled data or extract
knowledge from existing NER systems.

2.2. Transfer Learning

In Natural Language Processing (NLP), transfer learning can be referred to as do-
main adaptation [Pan and Yang 2010]. Previous work in domain adaptation can be
classified into two settings: 1) a small amount of labeled data are available in the
target domain [Daumé III 2007; Blitzer et al. 2007; Jiang and Zhai 2007], and 2) no
labeled data but some unlabeled data are available in the target domain [Blitzer et al.
2006; Jiang and Zhai 2007; Wu et al. 2009; Pan et al. 2008; Pan et al. 2011; Pan
et al. 2010; Glorot et al. 2011]. In this article, we focus on the latter setting, which is

2Applying the proposed method to other cross-domain multiclass classification applications is one of our
future directions.

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

7:4 S. J. Pan et al.

more practical in real-world applications. In this setting, existing domain adaptation
approaches can be further classified into two categories: instance-based and feature-
based approaches [Pan and Yang 2010]. Instance-based approaches assume that part
of labeled data from the source domain are useful to build models for the target domain
after reweighting. So far, many instance reweighting techniques have been proposed
to domain adaptation, such as bootstrapping [Jiang and Zhai 2007] and correcting
sample selection bias or covariate shift techniques [Quionero-Candela et al. 2009]. Dif-
ferent from instance-based approaches, feature-based approaches assume that there
exists a good feature representation across the source and target domains [Ben-David
et al. 2007]. Based on the feature representation, domain difference can be reduced,
and many existing models can be reused for cross-domain classification. Some methods
have been proposed for uncovering such good feature representation, such as struc-
tural correspondence learning (SCL) [Blitzer et al. 2006], maximum mean discrepancy
embedding (MMDE) [Pan et al. 2008], transfer component analysis (TCA) [Pan et al.
2011], spectral feature alignment (SFA) [Pan et al. 2010], and deep-learning-based
feature learning [Glorot et al. 2011].

For domain adaptation in NER, Jiang and Zhai [2007] proposed the Balanced Boot-
strapping (BB) algorithm. The goal of BB is to iteratively select most confidently labeled
data from the target domain and add them to the source domain training pool to train
a more precise model for the target domain. Wu et al. [2009] proposed another boot-
strapping algorithm named Domain Adaptive Bootstrapping (DAB) for NER. In DAB,
new instance selection strategy and termination criterion are proposed. Experimental
results showed that DAB can outperform the standard bootstrapping algorithm and
BB in cross-domain NER. However, neither BB nor DAB can work for multiclass clas-
sification problems naturally. By using BB or DAB, one has to first reduce a NER task
into multiple binary classification tasks using the one-vs-rest strategy, and then train
multiple binary classifiers independently. Finally, predictions are made according to
the outputs of all binary classifiers. As a result, either BB or DAB fails to fully ex-
ploit the relationships between different types of entities, which indeed can be used
to further boost the performance of NER. Daumé III [2007] proposed a simple fea-
ture augmentation method for NER. This method can train multiclass models on the
augmented features naturally. However, it requires some labeled data available in the
target domain, which is beyond the setting discussed in this work. More recently, Chen
et al. [2009] proposed a feature-based domain adaptation method for multiclass text
mining, which aims to learn a subspace to reduce domain difference and capture label
dependency. However, this method still needs to train multiple binary classifiers using
the one-vs-rest strategy. Furthermore, in their proposed method, for each classifier, an
iterative domain adaptation approach is performed on the source and target domain
data, which requires eigendecomposition on a m× m matrix in each iteration, where
m is the number of original features. This may become computational expensive in
both training and testing stages when both the numbers of classes and features are
large [Whitelaw et al. 2008].

Different from previous methods, in this article, we propose a new transfer learning
method for NER, where we employ the label embedding techniques [Weinberger and
Chapelle 2009; Bengio et al. 2010] to transform multiclass classification to regression
in a low-dimensional latent space. Meanwhile, we employ the feature-based domain
adaptation techniques [Pan et al. 2008, 2011] to ensure that the distance in data
distributions between the source and target domains is minimized in the latent space.
In this way, the relationships between classes (types of entities) can be fully exploited
and difference between domains can be reduced in the latent space. Furthermore, we
propose two solutions to solve the objective efficiently even when the number of classes
is large.

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

Transfer Joint Embedding for Cross-Domain Named Entity Recognition 7:5

2.3. Notation

In the sequel, matrices and vectors are both written in bold (e.g., X, x). 1 is the column
vector with all ones, and I is the identity matrix. The transpose of vector or matrix is de-
noted by the superscript �, tr(X) and X−1 denote the trace and inverse of X respectively,
and ‖X‖F denotes the Frobenius norm of X. As mentioned in the previous section, in
this article, we focus on the transfer learning setting where sufficient labeled data DS
are available in the source domain and only unlabeled data DT are available in the tar-
get domain. Let the source domain data be DS = {(xSi , ySi)}n1

i=1, where xSi ∈ X ⊆ R
1×m is

the input and ySi ∈ Y is the corresponding output. Similarly, let the target domain data
be DT = {xTi }n2

j=1, where the input xTi is also in X . We assume the source and target
domain share the same label space Y. Let P(XS) and P(XT) be the marginal distribu-
tions of XS = {xSi } and XT = {xTi } in the source and target domains respectively. In
general, P(XS) and P(XT) can be different. Our task is to make predictions on unseen
test data {x∗

Ti
}’s in the target domain. The key assumption in most domain adaptation

methods is that P(XS) �= P(XT), but P(YS|XS) = P(YT |XT). Through this article, we
denote α, β ∈ {1, . . . , c} class or label indices, and φ(α) = [0, . . . , 1, . . . , 0] a row vector
of dimensionality c with all zeros but a single 1 in the αth position, and use the words
label and class interchangeably.

2.4. Hilbert Space Embedding of Distributions

2.4.1. Maximum Mean Discrepancy. Given samples X = {xi} and Z = {zi} drawn from
two distributions, Maximum Mean Discrepancy (MMD) [Smola et al. 2007] is a non-
parametric distance estimate for measuring their distance. Different from other cri-
teria, such as the Kullback-Leibler (KL) divergence, MMD does not require an in-
termediate density estimate, and can estimate the distance between distributions in a
Reproducing Kernel Hilbert Space (RKHS) directly [Gretton et al. 2007]. Let the kernel-
induced feature map be ϕ. The empirical estimate of MMD between {x1, . . . , xn1} and
{z1, . . . , zn2} is

MMD(X, Z) =
∥∥∥∥∥ 1

n1

n1∑
i=1

ϕ(xi) − 1
n2

n2∑
i=1

ϕ(zi)

∥∥∥∥∥
2

H

,

where ‖·‖H is the RKHS norm. Therefore, the distance between two distributions is
simply the distance between the two mean elements in a RKHS. It can be shown that
when the RKHS is universal, MMD asymptotically approaches zero if and only if the
two distributions are the same [Smola et al. 2007].

2.4.2. Hilbert-Schmidt Independence Criterion. Related to the MMD, the Hilbert-Schmidt
Independence Criterion (HSIC) [Gretton et al. 2005] is a simple yet powerful nonpara-
metric criterion for measuring the dependence between the sets X and Y. As its name
implies, it computes the Hilbert-Schmidt norm of a cross-covariance operator in the
RKHS. An (biased) empirical estimate can be easily obtained from the corresponding
kernel matrices, as

HSIC(X, Y) = 1
(n − 1)2 tr(HKHKy),

where K, Ky are kernel matrices defined on X and Y respectively, H = I − 1
n11� is the

centering matrix and n is the number of samples in X and Y. Similar to MMD, it can
also be shown that if the RKHS is universal, HSIC asymptotically approaches zero if
and only if X and Y are independent. Conversely, a large HSIC value suggests strong
dependence.

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

7:6 S. J. Pan et al.

2.5. Domain Adaptation via MMD and HSIC

Recently, Pan et al. [2011] proposed a semi-supervised feature extraction method
named Semi-Supervised Transfer Component Analysis (SSTCA) based on the MMD
and HSIC criteria for domain adaptation. The motivation behind SSTCA is that there
may exist some common latent factors between the source and target domains, pro-
jected onto which the domain difference can be reduced and original data structure (e.g.,
data variance, local geometric structure, dependency to side information, etc.) can be
preserved. As a result, the latent space spanned by the latent factors can be used as a
bridge for cross-domain classification or regression tasks. In summary, SSTCA tries to
learn a mapping ϕ to map the source and target domain data to a latent space, where
the distance in data distributions between the source and target domains measured by
MMD(P(ϕ(XS)),P(ϕ(XT))) is small, and the dependence between the embeddings and
labels of the source domain data measured by HSIC(ϕ(XS), YS) is large. By assuming
that the kernel defined on inputs used in MMD and HSIC is linear, that is, ϕ(x) = x�,
where � ∈ R

m×p, the goal of SSTCA is to learn � by optimizing the following objectives
simultaneously,

min
�

tr(X���X�L) + μ tr(���), (1)

max
�

1
n2

1

tr
(
HXS���X�

SHKy
)
, (2)

where X = [X�
S X�

T]�, Li j = 1/n2
1 if xi, x j ∈ XS; Li j = 1/n2

2 if xi, x j ∈ XT ; otherwise,
Li j = −1/(n1n2), Ky is a kernel matrix defined on labels YS, and μ ≥ 0 is a tradeoff
parameter. The first term in the minimization objective is to reduce the distance in data
distributions between the source and target domains, the second term is a regulariza-
tion term, while the maximization objective is to maximize the dependence between
the embedding and labels. To solve the two objectives simultaneously, Pan et al. [2011]
proposed the following constrained minimization problem,

min
�

tr(X���X�L) + μ tr(���)

s.t. tr
(
HXS���X�

SHKy
) = I. (3)

By using the method of Lagrange multipliers, it can be shown that the above optimiza-
tion problem can be solved by eigen-decomposing on the following m× m matrix [Pan
et al. 2011],

(X�LX + μ I)−1X�
SHKyHXS. (4)

The computational time is O(p× (n1 +n2)2) when p nonzero eigenvectors are extracted.

3. PROBLEM STATEMENT AND OVERALL APPROACH

Recall that we have no labeled data in the target domain, while we have plenty of
labeled data DS = {(xSi , ySi)}n1

i=1 in the source domain and some unlabeled data DT =
{xTj }n2

j=1 in the target domain. In domain adaptation, P(XS) and P(XT) may not be the
same. Our task is to make predictions on unseen test data D∗

T = {x∗
Ti

}n
i=1 in the target

domain.
Our proposed Transfer Joint Embedding (TJE) consists of the following three

components.

(1) For labels, we aim to find a mapping �y to embed each label α ∈ Y into a label
latent space F of dimensionality q. The new representation �y(α) can be referred
to as the prototype of the label α in the latent space. Intuitively, if two labels α and

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

Transfer Joint Embedding for Cross-Domain Named Entity Recognition 7:7

β are related, then the distance between their corresponding prototypes �y(α) and
�y(β) is small, otherwise, far away.

(2) For reducing the difference between domains, we aim to discover an adaptive map-
ping �a to project the source and target domain data onto an intermediate feature
latent space F ′ of dimensionality p, where the distance between data distributions
of the source and target domains P(�a(XS)) and P(�a(XT)) is small.

(3) Finally, we need to learn a mapping �x to map the adapted representations �a(XS)
and �a(XT) from F ′ to F , such that in the label latent space F , the adapted source
domain instances �x(�a(XS)) are closer to their corresponding label-prototypes
�y(YS) than others.

After we obtain �y, �a and �x, for any unseen data x∗
T from the target domain, we can

employ the following nearest neighbor classification rule to predict its label.

y∗
T = arg min

α

∥∥�x
(
�a

(
x∗

T

)) − �y(α)
∥∥

2 .

4. TRANSFER JOINT EMBEDDING

In this work, we assume that �y, �a and �x are linear mappings and can be written
as �y(α) = φ(α)V, �a(x) = x� and �x (̃x) = x̃W, respectively, where V ∈ R

c×q, � ∈ R
m×p

and W ∈ R
p×q. We present two algorithms to learn the mappings �y, �a and �x (V, �

and W in particular). One is based on sequential-optimization and the other is based
on joint-optimization.

4.1. Label Embedding

The first step is to embed the labels into a low-dimensional latent space. By assuming
�y(α) = φ(α)V, our goal is to learn the mapping V ∈ R

c×q for labels. There are various
ways to learn V. The simplest method is to set V = I, where I ∈ R

c×c denotes the
identity matrix. In this case, q = c and the label-prototypes are all in distance

√
2 from

each other at the corner of a (c − 1)-dimensional simplex. However, in many real-world
applications, some labels may be more related to each other. As a result, the distance
between their corresponding prototypes tend to be smaller. Furthermore, when c is
huge, it would be more desirable to pick q � c.

An alterative approach is to derive the mapping V for the label-prototypes from a cost
matrix C ∈ R

c×c, which is a dissimilarity matrix defined on the labels, by using metric
multidimensional scaling (MDS) [Cox and Cox 1994; Weinberger and Chapelle 2009].
However, in general, a cost matrix C is not always available or cannot be properly
defined. Therefore, in this article, we borrow the idea from Bengio et al. [2010] to
construct the mapping V using the following method. First, we train independent
classifiers fi, for instance, Support Vector Machines (SVMs), for each label 1, . . . , c,
and compute the c × c confusion matrix M over the source domain labeled data DS.
By considering the confusion matrix M as a similarity matrix, we then compute its
corresponding Laplacian matrix L = D − M, where Dii = ∑

j Mi j . Finally, we recover
the label-embedding mapping V by using Laplacian Eigenmaps [Belkin and Niyogi
2003] as follows,

min
V

tr(V�LV) (5)

s.t. V�DV = I.

Note that the optimal solution of the above optimization problem can be obtained by
solving a generalized eigen-decomposition problem. Here, we assume that though the
data distributions may differ across domains, the confusion matrices over labels in
different domains are similar.

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

7:8 S. J. Pan et al.

4.2. Transfer Feature Embedding

After we find a suitable mapping V to embed the labels into a latent space of dimen-
sionality q, the problem of multiclass classification has been transformed to a q-variate
regression problem. However, so far we have not reduced the difference between the
source and target domains, resulting in that a regression model trained on the source
domain may still not be able to make precise predictions on the target domain. There-
fore, we need to look for a new data representation to reduce the domain difference.
We can apply SSTCA as introduced in (3) to learn a feature mapping �, such that
the distance in distributions between the mapped source and target domain data,
Dist(P(XS�),P(XT �)), is minimized and XS� is relevant to φ(YS)V. As will be intro-
duced in the joint-optimization solution, we aims to use an iterative algorithm to solve
� for large-scale data. Therefore, to avoid the expensive computation on performing
inverse and eigen-decomposition on the m× m matrix (4) in each iteration, we modify
the original objective of SSTCA to the following unconstrained optimization problem,
which can be solved by either eigen-decomposition or gradient-descent methods,

min
�

tr

(
X���X�L − 1

n2
1

HXS���X�
SHKy + μ ���

)
, (6)

where we use the linear kernel for labels, Ky = �y(YS)�y(YS)� = (φ(YS)V)(φ(YS)V)�,
and X, H and L are the matrices as defined in (1). The objective (6) can be further
rewritten as

min
�

tr
(
�� (ϒ1 + μ I) �

)
, (7)

where ϒ1 = X�LX − 1
n2

1
X�

SHφ(YS)VV�φ(YS)�HXS. It can be proven that the optimal

solution � of (7) can be solved by eigen-decomposing on the matrix ϒ1 + μ I.

4.3. Classification through Regression in the Latent Space

So far, we have learned the embedding mapping V : Y → F to map the labels to the
latent space F , and the domain adaptation mapping � : X → F ′ to project the source
and target domain instances XS and XT onto the feature latent space F ′. All that
remains is to learn the mapping W : F ′ → F to map the adapted source domain feature
vectors XS� to their corresponding labels φ(YS)V, such that source domain instances
are close to the their corresponding label-prototypes, and source domain instances with
different labels are well separated. Based on this objective, we formulate the following
optimization problem to learn the mapping W,

min
W

h(W) = 1
2n1

n1∑
i=1

∥∥φ(ySi)V − xSi �W
∥∥2

2 + λ1

2
‖W‖2

F (8)

where λ1 > 0 is the parameter of the regularization term ‖W‖F , which aims to avoid
potential overfitting. It can be proven that the optimization (8) has the closed form
solution,

W = 1
n1

(
1
n1

��X�
SXS� + λ1I

)−1

��X�
SJSV, (9)

where JS ∈ {0, 1}n1×c is an indexing matrix with JSiα = 1 if and only if yi = α. Note
that instead of computing the matrix inverse (1

n1
��X�

SXS� + λ1I)−1, which may be
expensive, (9) can be solved efficiently with linear conjugate gradient for each column
of W independently.

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

Transfer Joint Embedding for Cross-Domain Named Entity Recognition 7:9

ALGORITHM 1: Sequential optimization approach to Transfer Joint Embedding (TJEq)

. Input: DS, DT and parameters: λ1, μ, p and q.

. Output: V, � and W.

1: Learn V by solving (5).
2: Learn � by solving (7).
3: Learn W by using (9).

4.4. Prediction

The overall algorithm of the given sequential-optimization approach to learning V, �
and W is described in Algorithm 1. After we obtain V, � and W, for any unseen test
data x∗

T from the target domain, we can employ the following rule to predict its labels.

y∗
T = arg min

α

∥∥x∗
T �W − φ(α)V

∥∥
2 . (10)

Note that, using (10) for prediction requires to calculate the distances between the
embedded test data x∗

T �W and all label-prototypes φ(α)V, α ∈ {1, . . . , c}. When c is
huge, it would be computationally expensive. However, as proposed in Bengio et al.
[2010], in the label embedding space F , one can further learn a tree on labels to speed
up prediction time.

4.5. A Unified Formulation

The sequential-optimization approach just described may not get optimal solutions for
V, � and W, since it tends to optimize the mappings independently. In this section, we
present a unified optimization framework to learn the mappings jointly. Formally, we
aim to solve the following objective,

min
V,�,W

1
2n1c

∑
i,α

ξiα + λ1

2
‖W‖2

F + λ2

2
tr

(
��ϒ1�

) + λ3

2
‖�‖2

F (11)

s.t.
∥∥φ(ySi)V − xSi �W

∥∥2
2 ≤ ∥∥φ(α)V − xSi �W

∥∥2
2 + ξiα, ∀α ∈ Y\ySi

ξiα ≥ 0, i = 1, . . . , n1,

‖Vi‖2 ≤ 1.

where λ1, λ2 and λ3 are nonnegative tradeoff parameters, Vi denotes the ith row of V,
and ϒ1 is the same as defined in (7). The “soft” inequality constraints,∥∥φ(ySi)V − xSi �W

∥∥2
2 ≤ ∥∥φ(α)V − xSi �W

∥∥2
2 + ξiα,

are to enforce that for each source domain input xSi , it is closer to its corresponding
label-prototype ySi than other label-prototypes in the label latent space F . The first
term in the objective is to minimize the amount of violation of the “hard” inequality
constraints absorbed by the slack-variables {ξiα ≥ 0}’s. The second and fourth terms in
the objective are regularization terms on W and � respectively. The third term aims
to minimize the distance between the source and target domains after projection. The
constraints ‖Vi‖2 ≤ 1 are to control the scale of the label mapping V. To solve the
joint-optimization problem (11), we first reformulate the objective as

min h̃(V,�, W) (12)

= 1
2n1c

∑
i,α

	((xSi , ySi , α); V,�, W) + λ1

2
‖W‖2

F + λ2

2
tr

(
��ϒ1�

) + λ3

2
‖�‖2

F ,

s.t. ‖Vi‖2 ≤ 1,

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

7:10 S. J. Pan et al.

where the loss function 	((xSi , ySi , α); V,�, W) is defined as

	(·) = max
(
0,

∥∥φ(ySi)V − xSi �W
∥∥2

2 − ∥∥φ(α)V − xSi �W
∥∥2

2

)
, (13)

which is similar to the hinge-loss in SVMs. The objective (12) is nonconvex with respect
to V, � and W, but it is convex with respect to any one of them when fixing the other
two. As a result, we can fix any two matrices and apply subgradient descent methods
to optimize the left one iteratively though the loss function 	(·) is not differentiable
everywhere. In particular, we propose a algorithm based on stochastic gradient descent
(SGD) [Zhang 2004] to solve the optimization problem (12).

The pseudo-code of the proposed SGD algorithm is summarized in Algorithm 2.
Specifically, in each iteration t of the algorithm, we first choose a set At ⊆ DS of size k,
and a set Bt ⊆ DT of size k. Then we define a new objective function as follows,

min
V,�,W

h̃(V,�, W; At, Bt) (14)

= 1
2kc

∑
(xSi ,ySi)∈At

∑
α

	
(
(xSi , ySi , α); V,�, W

) + λ1

2
‖W‖2

F + λ2

2
tr

(
��ϒt

1�
) + λ3

2
‖�‖2

F ,

s.t. ‖Vi‖2 ≤ 1,

where ϒt
1 denotes the computation of ϒ1 as defined in (7) on the sets At and Bt. Note

that ϒ1 is dependent on the mapping V.

ALGORITHM 2: SGD for solving V, � and W in (11) jointly.
. Input: DS, DT and parameters: λ1, λ2, λ3, T , ηt, p, q and k.
. Output: V, � and W.

1: Initialize W0, �0 and V0.
2: for t = 0 to T − 1 do
3: Pick random At ⊆ DS and Bt ⊆ DT , such that |At| = |Bt| = 2k.
4: Denote

A+
t = {(xSi , ySi , α) : (xSi , ySi) ∈ At, α ∈ {1, . . . , c}, 	((xSi , ySi , α); Vt, �t, Wt) > 0}.

5: Fix �t and Vt, update Wt+1 by using (15) and (16).
6: Fix Wt+1 and Vt, update �t+1 by using (17) and (18).
7: Fix Wt+1 and �t+1, update Vt+ 1

2
by using (19) and (20).

8: Project each row of Vt+ 1
2

to a unit vector by using (22).
9: end for
10: Set W = WT , � = �T and V = VT .

4.5.1. Updating W. Firstly, we fix �t and Vt, and update Wt by using the following rule,

Wt+1 = Wt − ηt∇(t)
W h̃(Vt,�t, Wt; At, Bt), (15)

where ∇ (t)
W h̃(Vt,�t, Wt; At, Bt) is the subgradient of h̃(·) with respect to W at Wt in the tth

iteration, which can be derived from the following proposition. The proof can be found
in Appendix A.

PROPOSITION 4.1. Given �t and Vt, the subgradient of h̃(·) with respect to W at Wt in
the tth iteration can be written as

∇ (t)
W h̃(Vt,�t, Wt; At, Bt) = λ1Wt + 1

kc

∑
(xSi ,ySi)∈A+

t

��
t x�

Si
�iαVt, (16)

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

Transfer Joint Embedding for Cross-Domain Named Entity Recognition 7:11

where �iα = φ(α) − φ(ySi), and

A+
t = {(xSi , ySi , α) : (xSi , ySi) ∈ At, α ∈ {1, . . . , c}, 	((xSi , ySi , α), Vt,�t, Wt) > 0}.

4.5.2. Updating �. After updating Wt+1, we then fix Vt and Wt+1, and update �t by
using the following rule,

�t+1 = �t − ηt∇(t)
� h̃(Vt,�t, Wt+1; At, Bt), (17)

where ∇ (t)
� h̃(Vt,�t, Wt+1; At, Bt) is the subgradient of h̃ with respect to � at �t in the tth

iteration, which can be derived from the following proposition. The proof can be found
in Appendix B.

PROPOSITION 4.2. Given Vt and Wt+1, the subgradient of h̃(·) with respect to � at �t
in the tth iteration can be written as

∇ (t)
� h̃(Vt,�t, Wt+1; At, Bt) = (

λ3I + λ2ϒ
t
1

)
�t + 1

kc

∑
(xSi ,ySi)∈A+

t

x�
Si

�iαVtW�
t+1. (18)

4.5.3. Updating V. Finally, by fixing �t+1 and Wt+1, we can update Vt by using the rules
derived from the following proposition. The proof can be found in Appendix C.

PROPOSITION 4.3. Given updated �t+1 and Wt+1, the mapping Vt can be updated by
the following two steps,

(1) We first update Vt+ 1
2

as follows,

Vt+ 1
2

= Vt − ηt∇(t)
V h̃(Vt,�t+1, Wt+1; At, Bt), (19)

where ∇(t)
V h̃(Vt,�t+1, Wt+1; At, Bt) is the subgradient of h̃ with respect to V in the tth

iteration, which can be written as

∇(t)
V h̃(Vt,�t+1, Wt+1; At, Bt)

= −λ2ϒ
t
2Vt + 1

kc

∑
(xSi ,ySi)∈A+

t

(
�iαVt + �iαxSi �t+1Wt+1

)
, (20)

where ϒ2 is defined as follows,

ϒ2 = 1
n2

1

φ(YS)�HXS���X�
SHφ(YS), (21)

and ϒt
2 is the computation of ϒ2 on the set At. �iα = φ(ySi)

�φ(ySi) − φ(α)�φ(α). Note
that ϒ2 is dependent on the mapping �.

(2) We then project each of row of Vt+ 1
2

onto the set

B = {
v : v ∈ R

1×q, ‖v‖2 ≤ 1
}

by using the following equation,

(Vt+1)i = min

⎛⎜⎝1,
1∥∥∥(

Vt+ 1
2

)
i

∥∥∥
2

⎞⎟⎠ (
Vt+ 1

2

)
i. (22)

In general, gradient-descent-based methods on non-convex functions may converge
to undesirable local minima. One way to avoid this is to provide a good initializa-
tion or prior. Note that the solutions of V0, �0 and W0 obtained from the sequential-
optimization problems (5), (7) and (9) may be highly accurate initializations for solving
the joint-optimization (11). Therefore, we can use V0, �0 and W0 as initial start points
of V, � and W for the SGD algorithm in Algorithm 2.

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

7:12 S. J. Pan et al.

4.6. Further Discussion

For the optimization problem proposed in (11), we can further enforce a set of margins
{Cyi ,α ≥ 0}’s in the equality constraints as follows,

min
V,�,W

1
2n1c

∑
i,α

ξiα + λ1

2
‖W‖2

F + λ2

2
tr

(
��ϒ1�

) + λ3

2
‖�‖2

F (23)

s.t.
∥∥φ(ySi)V − xSi �W

∥∥2
2 + Cyi ,α ≤ ∥∥φ(α)V − xSi �W

∥∥2
2 + ξiα, ∀α ∈ Y\ySi ,

ξiα ≥ 0, i = 1, . . . , n1,

‖Vi‖2 ≤ 1, & Cyi ,α ≥ 0,

such that a specific source domain input xi is much closer to its corresponding label-
prototype than others by a large margin Cyi ,α. The values of the margins can be con-
verted by a cost matrix C between classes. However, in general, cost matrices may not
be available. For NER, there may exist a hierarchical structure underlying different
types of entities including the “negative” type of entities. A simple solution to generate
a cost matrix is to use the shortest paths between entities on the hierarchy as their
misclassification cost. However, based on our experiments, we find that by using the
shortest paths between entities as cost to define large margins {Cyi ,α}’s in (23), we do
not get a better solution compared to that obtained by solving (11). The reason may be
that most NER tasks are class imbalanced. The number of “negative” entities always
dominates the number of “positive” entities. Even for “positive” entities, some of them
are relatively rarer than others. Therefore, in order to construct a proper cost matrix
between entities, besides utilizing the shortest paths on the entity hierarchy, we need
to take the class-imbalanced issue into consideration as well. We leave this research
issue in our future work.

4.7. Computational Complexity

In multiclass classification, one important issue is the computational cost in testing.
For each testing instance (e.g., a term or word), TJE requires O(mp) to project the
instance from the original feature space to the feature latent space, and O(pq) to apply
the nearest neighbor rule (10) to make predictions, where m is the dimensionality of the
original feature space, p is the dimensionality of the feature latent space, and q is the
dimensionality of the label latent space. In general, p � m, and q � c, where c is
the number of labels/classes. Thus the total computational time for a testing instance
is O(p(m + q)). By applying the label embedding tree algorithm in the label latent
space as proposed in Bengio et al. [2010], the testing time can be further reduced
to O(p(m+ log(q))), which can dramatically reduce the computational time when the
number of classes is huge.

5. EXPERIMENTS

5.1. Datasets

In our experiments, we use the Automatic Content Extraction (ACE) 2005 dataset,3
which consists of 6 domains: Broadcast Conversations (BC), Broadcast News (BN), Con-
versational Telephone Speech (CTS), Newswire (NW), Usenet (UN), and Weblog (WL).
A brief description of the 6 domains is presented in Table I. In total, there are 7 entity
types and 40 subtypes annotated in the corpus. The detailed information of the types
and subtypes of entities is described in Table II, where FAC, GPE, LOC, ORG, PER,
VEH and WEA denote Facility, Geo-Political Entity, Location, Organization, Person,

3http://www.itl.nist.gov/iad/mig/tests/ace/ace05/doc/ace05-evalplan.v3.pdf

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

Transfer Joint Embedding for Cross-Domain Named Entity Recognition 7:13

Table I. Description of Domains of the ACE 2005 Dataset

Domains Sources of news articles
BC CNN CrossFire, CNN Inside Politics, and CNN Late Edition
BN Cable News Network, CNN Headline News
NW Agence France Presse in English, Associated Press, New York Times, Xinhua News

Agency in English
CTS EARS Fisher 2004 Telephone Speech Collection Supplement
UN Various internet discussion forums / bulletin boards
WL Various internet weblogs (shared online journals)

Table II. Summary of Entity Types and Subtypes of the ACE 2005 Dataset

Types Subtypes
FAC Airport, Building-Grounds, Path, Plant, Subarea-Facility
GPE Continent, County-or-District, GPE-Cluster, Nation, Population-Center, Special,

State-or-Province
LOC Address, Boundary, Celestial, Land-Region-Natural, Region-General, Region-International,

Water-Body
ORG Commercial, Educational, Entertainment, Government, Media, Medical-Science,

Non-Governmental, Religious, Sports
PER Group, Indeterminate, Individual
VEH Air, Land, Subarea-Vehicle, Underspecified, Water
WEA Biological, Blunt, Chemical, Exploding, Nuclear, Projectile, Sharp, Shooting, Underspecified

Table III. Summary of the ACE 2005 Dataset on NER

Domain # Sentences # Words # Words per
sentence

% Words of positive
types

Features # Features after
filtering

BC 2,711 45,911 16.9 9.32%

41,589 12,165

BN 3,892 62,352 16.0 6.89%
NW 1,995 53,325 26.7 12.59%
CTS 2,017 42,380 21.0 6.83%
UN 1,853 41,797 22.5 6.32%
WL 3,138 49,601 15.8 6.45%

Vehicle, and Weapon, respectively. Some previous results have been reported on the 7
entity types in cross-domain NER [Jiang and Zhai 2007; Wu et al. 2009]. However, it is
more useful to recognize more meaningful types of entities for real-world applications,
such as airports, detailed addresses, etc. Therefore, in this article, the evaluation of dif-
ferent models in cross-domain NER is performed on the 40 subtypes. The 40 subtypes
of entities can be referred to as positive classes. By considering “none-of-the-above”
as an additional type of entities, which can be referred to as the negative class, we
have 41 classes in total. We use conventional features to represent each word for NER,
including lexical features such as current word and context words in a window, ortho-
graphic features that capture capitalization, digitalization and other word formation
information, gazetteer features derived from the presence of the current word string in
name lists, part-of-speech features, and semantic trigger word features for head noun
of entity names or their local context, which are commonly in machine-learning-based
NER systems [Zhou and Su 2002]. Since the features are extremely sparse, we filter
out the features whose total frequencies are lower than 5 for computational efficiency.
After that, we obtain a relatively small dictionary with around 12,000 features. The
summary of the statistic of the dataset is described in Table III.

In this dataset, we construct 30 cross-domain NER tasks, which are listed in Table IV.
In the table, the word before an arrow corresponds with the source domain and the

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

7:14 S. J. Pan et al.

Table IV. The 30 Cross-Domain NER Tasks Conducted on the ACE 2005 Dataset

Source domains
Target domains

BC BN NW CTS UN WL
BC - BC → BN BC → NW BC → CTS BC → UN BC → WL
BN BN → BC - BN → NW BN → CTS BN → UN BN → WL
NW NW → BC NW → BN - NW → CTS NW → UN NW → WL
CTS CTS → BC CTS → BN CTS → NW - CTS → UN CTS → WL
UN UN → BC UN → BN UN → NW UN → CTS - UN → WL
WL WL → BC WL → BN WL → NW WL → CTS WL → UN -

word after an arrow corresponds with the target domain. For each task, we randomly
sample 1,000 sentences (around 19,000 words or instances) from the source domain.
The words in the sampled sentences with their labels (entity types or “none-of-the-
above”) are considered as the labeled source domain data DS. We also randomly sample
800 sentences (around 15,000 words) from the target domain. The words in the sampled
sentences without the labels are considered as the unlabeled target domain data DT .
Finally, we randomly sample the other 1,000 sentences (around 19,000 words) from
the target domain. The words in the sampled sentences with labels are considered as
target domain test data D∗

T . We train different models on DS and DT , and evaluate
them on D∗

T . We repeat this process 5 times, and report the average results.

5.2. Evaluation Criteria

For evaluation criteria, we use micro and macro F1 scores to evaluate the NER results.4
The definition of F1 for binary classes (positive or negative) is defined as follows,

F1 = 2 · Pre · Rec
Pre + Rec

, (24)

where Pre is the precision which is the proportion of the positive instances that are
correctly predicted against all positive predictions5

Pre = |{true positive instances} ∩ {predicted positive instances}|
|{predicted positive instances}| ,

and Rec is the recall which is the proportion of the positive instances that are correctly
predicted against all true positive instances,

Rec = |{true positive instances} ∩ {predicted positive instances}|
|{true positive instances}| .

Both F1-micro and F1-macro are extensions of F1 in the multiclass setting. For NER
on the ACE 2005 dataset, we have 40 entity types Cp = {1, 2, . . . , 40} and 1 negative

4Note that typically NER is evaluated at phrase-level. However, for evaluation on entity subtypes on the ACE
2005 dataset, the ACE organizers suggested to use a hybrid criterion of both word-level and phrase-level. In
general, the performance of NER at phrase-level can be improved if one uses the “B-I-O” tagging strategy for
each subtype. However, if we use the B-I-O tags on each subtype, many tags are extremely sparse in some
domains. Therefore, in this work, we evaluate NER at word level. It is still fair that we compare all methods
using the same criterion.
5We assume the positive class is the class of interest.

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

Transfer Joint Embedding for Cross-Domain Named Entity Recognition 7:15

type Cn = {41}. Precision and recall used in F1-micro are defined as follows,

Pre-micro

= |{instances annotated as one of the 40 entity types that are predicted correctly}
|{instances predicted as one of the 40 entity types}| ,

Rec-micro

= |{instances annotated as one of the 40 entity types that are predicted correctly}|
|{instances annotated as one of the 40 entity types}| .

Based on Pre-micro and Rec-micro, F1-micro can be calculated accordingly. Differently,
F1-macro is defined as follows,

F1-macro =
∑
i∈Cp

ni

N
F1i, (25)

where ni is the number of instances annotated as the ith entity type, N is the total
number of instances annotated as one of the 40 entity types, and F1i is the F1 defined
in (24) by considering the instances annotated as the ith entity type as positive instances
and the rest as negative instances.

5.3. Baselines

To investigate the effectiveness of our proposed method, we compare it with the follow-
ing methods, including state-of-the-art domain adaptation methods in NER.

—In-domain classifier MCi, which is a multiclass classifier trained with labeled data
from the target domain. For example, for the task BC → BN, MCi corresponds a
classifier trained with the labeled data from the BN domain. Therefore, the perfor-
mance of MCi for the task BC → BN can be also regarded as an upper bound of
other cross-domain tasks whose target domain is BN, that is, NW → BN, CTS →
BN, UN → BN, and WL → BN. To build an in-domain multiclass classifier, we try
three methods: 1) the one-vs-rest (1vsR) strategy, 2) [Crammer and Singer 2002]’s
multiclass SVMs,6 and 3) hierarchical SVMs [Dumais and Chen 2000], which applies
SVMs on the taxonomy of the 41 classes. The entity taxonomy is shown in Figure 1.
In training hierarchical SVMs, we first train a SVM to identify whether a term is
a named entity or not. And for all “positive” entities, we train a multiclass SVM to
classify a term into one of the 7 entity types. Finally, for each type of entity, we train a
multiclass SVM to classify a term into its corresponding entity subtypes.7 In testing
using hierarchical SVMs, along the taxonomy, which SVMs to be used is based on
the predicted results of the topper layer SVMs.8

—No-transfer classifiers, which are trained with the source domain labeled data DS
and applied to make predictions on the target domain data D∗

T directly without
adaptation. We denote MC1vsR, MCc, and MCh the multiclass classifiers built with
the 1vsR strategy, [Crammer and Singer 2002]’s method, and hierarchical SVMs,
respectively.

—Adaptive domain bootstrapping (DAB), which is one of state-of-the-art instance-
based domain adaptation methods for NER. Note that DAB was proposed in the

6We use LIBLINEAR SVM [Fan et al. 2008] to implement [Crammer and Singer 2002]’s multiclass SVMs,
and the 1vsR strategy.
7In hierarchical SVMs, each SVM has its own hyper-parameters, which are tuned on some handout data.
8We find that the multiclass SVM with the 1vsR strategy outperforms better than the other two. Therefore,
in this article, we use the multiclass SVM built with the 1vsR strategy for the in-domain classifier, and use
it as the basic classifier for other transfer learning baselines as well.

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

7:16 S. J. Pan et al.

FAC GPE LOCORG PERVEH WEA

NONE Named Entity

FAC
subtypes

GPE
subtypes

ORG
subtypes

LOC
subtypes

VEH
subtypes

PER
subtypes

WEA
subtypes

ROOT

Fig. 1. Named entity hierarchy used in hierarchical SVMs.

transductive learning manner. Therefore, we conduct two implementation versions
of DAB for comparison. The first version denoted by DABt is to apply DAB on DS
and D∗

T to train a model and make predictions on D∗
T at the same time. The second

version denoted by DABo is to apply DAB on DS and DT to train a model, and use
the learned model to make predictions on D∗

T . The latter version is more practical
for real-world applications, since in many scenarios, the test D∗

T are not available in
training.

—Structural correspondence learning (SCL), which is a state-of-the-art feature-based
domain adaptation methods for NLP. For comparison, we apply SCL on DS and DT
to train a model, and apply the learned model to make predictions on D∗

T . Follow-
ing Blitzer et al. [2007], we apply mutual information on the features and labels on
the source domain data to select “pivot” features. The numbers of the pivot features
and new derived features are tuned on some heldout data.

—As mentioned when � = I, TJE is reduced to the label embedding method [Bengio
et al. 2010] for single domain multiclass classification. We denote this method LE,
and consider it as another baseline method.

—SSTCA, which is another state-of-the-art feature extraction method for domain adap-
tion, can also be regarded as a reduction of TJE. Therefore, we consider it as a baseline
for comparison as well. We first apply SSTCA on DS and DT to learn a new feature
representation, and then train a multiclass classifier with the new representations
of DS. For testing, we first transform D∗

T using the new feature presentation, and
use the multiclass classifier to make predictions. For the kernel on labels in SSTCA,
we use the multiclass kernel proposed by Song et al. [2007].

For DABt, DABo, SCL, and SSTCA, we use 1vsR SVMs as the base classifiers. All
parameters of baselines are tuned on some heldout data on the task BC → BN and are
fixed to be used for all tasks.

5.4. Implementation of TJE for NER

In this section, we describe the implementation details of our proposed method TJE for
NER. As mentioned in the previous section, we can implement TJE by using two differ-
ent optimization strategies. One is based on sequential optimization TJEq (Algorithm 1)
and the other is based on joint optimization TJE j (Algorithm 2). The parameter set-
tings of TJEq and TJE j are summarized in Table V. For the dimensionality q of the
label embedding space, which corresponds to the mapping V ∈ R

c×q, we set q = c. This
is because on the ACE dataset, the total number of classes c is only 41 (including the
negative type of entities). In general, when c is large, we can set q � c to make the
learning and prediction more efficient. For the learning rate ηt in each iteration t, we
set ηt = 0.1/t, such than when t increases, the learning rate ηt decreases.

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

Transfer Joint Embedding for Cross-Domain Named Entity Recognition 7:17

Table V. Parameter Setting of TJE

λ1 λ2 λ3 (μ for TJEq) T ηt p q k
TJEq 10−4 N/A 10−2 N/A N/A 500 41 N/A
TJE j 10−4 10−3 10−2 30 0.1/t 500 41 # pos. instances in DS

For constructing At and Bt in each iteration t, we set k be the number of instances
annotated as any of the 40 entity subtypes in DS. More specifically, we first select
all instances annotated as one of the 40 entity subtypes, and then randomly select k
negative instances from DS to construct At. After that we randomly select 2k instances
from DT to construct Bt. The reason of this instance selection strategy is that from
Table III we can find that the number of words annotated as positive types is much
smaller than the number of words annotated as the negative type. If we randomly
select 2k instances from DS to construct At, most of them are negative instances.
However, the goal of NER is to extract positive entities, and further classify them into
predefined categories. Our proposed instance selection strategy is to ensure in each
iteration there are sufficient positive instances to be selected to update the mappings
�, W and V, which can be referred to as oversampling in class imbalanced classification
problems [Chawla et al. 2002]. Similar to the baseline algorithms, parameters of TJEq
and TJE j are tuned on some heldout data on the task BC → BN, and are fixed to be
used for all tasks. The sensitivity study on parameters is reported in Section 5.7.

5.5. Comparison Results

We first compare TJEq and TJE j with MCi, MCc, MC1vsR, MCh, DABt, DABo, and SCL
on the 30 tasks in terms of micro and macro F1 in Tables VI and VII. From the overall
performance, the feature-based domain adaptation methods, such as SCL, TJEq, and
TJE j outperform the instance-based domain adaptation methods, such as DABt, and
DABo. The reason is that for different sources of new articles, the vocabularies used can
be very different, and even the syntactic structures can be very different as well (e.g.,
Cable News Network vs. internet weblogs), resulting in a possibly small percentage of
overlapping features across different domains of news articles. In this case, reusing the
source domain labeled data by reweighting cannot help boost NER performance in the
target domain. In contrast, feature-based domain adaptation methods try to discover
some implicit features or latent factors underlying the observations of different domains
such that the distance between different domains represented by these implicit features
is reduced. If there exist such implicit features, then knowledge transfer across domains
based on these features becomes possible.

More specifically, consider Broadcast News (BN) as the target domain as an example.
The news articles in the BN domain of the ACE 2005 dataset do not include any capi-
talized words, while whether a word is capitalized or not is an important discriminative
feature to classify named entities in the other five domains. In this case, the weight of
the word-capitalization feature in the model learned from any of the other five domains
does not have any impact on making predictions on BN articles. In general, there exist
other features having similar properties as the word-capitalization feature in the BN
domain, which results in bad cross-domain NER performance (i.e., the second group of
the results in Tables VI and VII) of the no-transfer methods (i.e., MCc, MC1vsR, MCh),
and the instance-based domain adaptation methods (i.e., DABt, and DABo). In con-
trast, the feature-based domain adaptation methods (i.e., SCL, TJEq, and TJE j) aim
to learn implicit features across domains, and then train models onto the new feature
representations. If there exist discriminative implicit features across the source and
target domains, it is still possible to achieve good cross-domain NER performance even
though the explicit features across domains are very different. Furthermore, compared

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

7:18 S. J. Pan et al.

Table VI. Comparison Results on Cross-Domain 40-Entity-Type NER (F1-micro, unit:%)

Src. Tar.
F1-micro

MCi MCc MC1vsR MCh DABt DABo SCL TJEq TJE j

BN

BC 84.83

75.70 77.77 77.12 67.98 64.60 78.85 76.65 77.36
NW 75.00 76.05 73.66 78.05 77.97 77.24 77.67 77.91
CTS 70.25 70.45 69.49 74.34 73.07 73.36 73.63 74.18
UN 77.05 76.48 76.73 78.01 78.56 76.95 75.47 76.05
WL 74.77 75.86 73.20 77.35 77.55 77.31 76.75 77.53

BC

BN 78.70

54.97 54.91 44.05 49.75 55.97 64.34 67.91 68.21
NW 58.67 59.10 40.13 53.94 55.28 66.08 65.07 65.19
CTS 35.84 38.18 20.10 25.22 21.52 55.63 70.28 70.17
UN 63.71 65.87 57.45 67.60 67.61 69.22 74.45 74.17
WL 51.40 56.40 41.17 53.16 53.41 56.58 70.68 71.86

BC

NW 85.15

71.45 72.56 71.03 71.97 71.29 72.04 72.11 72.47
BN 72.39 74.70 73.77 60.99 62.40 72.60 74.42 74.78
CTS 69.40 70.20 68.67 73.93 75.71 68.86 74.59 74.80
UN 74.27 75.40 74.91 76.31 76.96 76.57 76.49 76.42
WL 76.98 77.35 75.40 81.08 81.24 79.07 77.84 80.22

BC

CTS 94.13

85.09 85.50 85.03 85.26 86.06 87.27 86.69 86.71
BN 82.29 84.29 83.71 61.06 44.53 87.49 86.62 86.89
NW 87.48 88.04 83.34 88.15 88.34 89.06 84.64 84.29
UN 87.90 87.90 87.55 88.40 88.25 89.14 87.60 87.78
WL 83.39 83.66 82.77 83.97 84.31 86.55 86.66 87.01

BC

UN 81.73

65.80 67.85 64.86 66.30 65.17 66.27 66.64 68.54
BN 67.20 69.30 68.48 61.28 63.30 67.34 70.84 71.92
NW 71.53 72.55 67.99 72.01 72.83 73.79 73.33 73.27
CTS 66.32 68.36 65.83 65.91 68.36 67.77 69.24 70.09
WL 72.00 72.97 68.39 74.05 74.62 74.00 73.34 76.18

BC

WL 76.56

57.14 59.18 57.25 55.69 56.56 57.79 57.32 58.68
BN 62.30 63.44 61.99 45.20 49.17 62.95 63.66 64.17
NW 66.95 68.07 65.27 66.84 67.02 66.86 68.19 68.74
CTS 56.65 57.47 55.27 63.65 64.44 55.43 63.97 64.70
UN 63.85 64.21 62.84 69.28 69.21 64.03 66.35 66.44

Avg. 83.44 69.26 70.47 66.58 67.89 67.84 72.02 73.64 74.23

to SCL, besides discovering an adapted feature latent space, TJEq and TJE j learn a
latent space for labels. This label latent space can capture the relationships between
labels, which is useful when the number of labels is large, especially when the “pos-
itive” training instances are sparse. Therefore, for cross-domain NER on the 40-type
entities, both TJEq and TJE j perform better than SCL. Finally, benefit from the joint
optimization strategy, TJE j performs slightly better than TJEq. Note that besides the
difference on optimization strategies, TJEq uses the least-squared loss while TJE j uses
the hinge loss. In our experiments, we have verified that by replacing the least-squared
loss with the hinge loss in TJEq, TJE j still performs slightly better that TJEq.

Furthermore, consider Conversational Telephone Speech (CTS) as the target do-
main as another example. From the fourth group of the results in Tables VI and VII,
we can observe that the no-transfer methods perform well in these five cross-domain
NER tasks, which implies that most discriminative features of the CTS domain appear
frequently and behave similarly on the other 5 domains. In this case, the feature-
based domain adaptation methods do not achieve much improvement compared to the
no-transfer learning methods and the instance-based domain adaptation methods. In

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

Transfer Joint Embedding for Cross-Domain Named Entity Recognition 7:19

Table VII. Comparison Results on Cross-Domain 40-Entity-Type NER (F1-macro, unit:%)

Source domain Target domain
F1-macro

MCi MCc MC1vsR MCh DABt DABo SCL TJEq TJE j

BN

BC 83.05

73.41 75.83 75.40 62.68 58.88 76.12 74.71 75.56
NW 74.58 75.00 73.69 76.53 76.59 75.61 75.37 75.68
CTS 67.23 67.03 67.08 70.08 68.31 67.76 69.84 70.50
UN 75.01 74.26 75.14 75.12 75.99 73.70 72.76 74.06
WL 73.91 74.00 73.16 75.66 75.91 74.68 75.06 76.02

BC

BN 77.21

50.30 49.62 38.89 42.68 49.59 58.76 62.78 63.17
NW 53.94 54.57 36.64 46.00 47.12 60.63 60.14 60.29
CTS 29.75 30.38 15.60 19.13 16.58 48.25 64.97 64.58
UN 57.77 61.37 52.05 61.44 61.88 63.14 71.58 71.36
WL 47.08 52.34 37.60 47.88 48.03 50.62 67.81 68.98

BC

NW 84.01

69.27 69.84 68.78 67.95 67.38 68.04 69.03 69.11
BN 70.72 73.19 72.39 54.60 56.22 69.78 72.66 73.07
CTS 65.12 65.30 64.69 69.38 71.60 62.38 71.09 71.38
UN 71.73 72.54 72.34 73.08 73.98 72.27 73.83 74.23
WL 75.22 75.46 74.07 79.38 79.78 76.41 76.36 78.79

BC

CTS 93.35

85.15 85.24 84.94 84.69 85.60 85.84 85.00 85.07
BN 81.47 83.38 82.95 58.86 42.45 86.23 85.79 86.03
NW 87.59 87.72 86.52 87.74 87.94 88.23 83.67 83.32
UN 86.92 86.77 86.64 87.22 87.13 87.82 86.38 86.73
WL 82.63 83.04 82.68 82.94 83.29 85.52 85.54 85.97

BC

UN 80.36

64.43 66.00 63.77 62.69 61.67 62.76 63.61 65.94
BN 66.44 68.15 67.35 58.18 59.32 65.33 69.02 70.18
NW 70.75 71.32 67.55 69.24 70.21 71.44 70.45 70.44
CTS 64.05 65.54 63.85 61.52 64.60 63.08 65.83 67.09
WL 71.00 71.14 68.13 72.19 72.80 71.35 71.32 74.22

BC

WL 74.54

53.00 54.27 52.84 48.54 50.26 51.35 51.93 53.80
BN 60.16 61.03 59.28 39.01 44.80 59.98 61.49 61.67
NW 65.57 66.42 63.84 64.02 64.74 64.02 65.26 65.95
CTS 50.28 50.43 49.81 57.12 59.32 47.25 60.65 61.47
UN 60.97 60.46 59.14 65.87 65.74 58.62 63.73 63.93

Avg. 82.09 66.85 67.72 63.81 64.03 64.26 68.23 70.92 71.62

addition, different from TJEq and TJE j , SCL augments the original features with the
learned implicit features. If most original features are useful for multiple domains, fea-
ture augmentation can further boost the performance, resulting in that SCL performs
the best in this group of experiments.

Another interesting observation is that DABt and DABo perform abnormally on some
tasks, such as the tasks BN → BC, CTS → BN, BN → NW, BN → CTS and BN →
WL. The performance of DABt and DABo on these tasks is even much worse than
that of the no-transfer methods. The reason is that DAB is a bootstrapping-style-based
method, whose performance highly depends on quality of the selected instances in each
iterations, especially in first few iterations, and the termination criterion. If the quality
of the selected instances are “bad” (i.e., the instances that are very dissimilar to the
current training pool, and thus cannot be classified correctly), DAB may suffer from
error propagation during iterations. Specifically, consider the task CTS → BN as an
example. As shown in Figure 2(a), by adding “bad” instances from the target domain in
the first few iterations, the performance of DABo in terms of micro and macro F1 scores
decreases dramatically when the number of iterations increases. Another example is

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

7:20 S. J. Pan et al.

0 5 10 15 20 25 30
15

20

25

30

35

40

45

of iteration

F
1

(%
)

CTS v.s. BN (F1−micro)
CTS v.s. BN (F1−macro)

(a) Varying # of iterations of DABo on CTS → BN.

0 10 20 30 40 50 60 70 80
45

50

55

60

65

70

75

80

85

90

of iterations

F
1

(%
)

BN v.s. CTS (F1−micro)
BN v.s. CTS (F1−macro)

(b) Varying # of iterations of DABo on BN → CTS.

Fig. 2. Performance of DABo in terms of micro and macro F1 scores under varying numbers of iterations.

Table VIII. Impact of Different Components of TJE on 40-Entity-Type NER (unit: %)

Target domain
F1-micro F1-macro

SSTCA LE TJEq TJE j SSTCA LE TJEq TJE j

BC (avg.) 75.32 76.55 76.03 76.61 73.29 73.04 73.55 74.36
BN (avg.) 55.48 64.26 69.68 69.92 50.32 58.70 65.46 65.68
NW (avg.) 72.32 74.61 75.09 75.74 69.03 70.99 72.60 73.32
CTS (avg.) 84.68 86.87 86.44 86.54 83.74 85.46 85.28 85.42
UN (avg.) 68.49 69.93 70.68 72.00 67.23 66.21 68.04 69.57
WL (avg.) 61.82 62.72 63.90 64.55 57.59 58.44 60.61 61.37

Avg. (all) 69.69 72.42 73.64 74.23 66.87 68.81 70.92 71.62

presented in Figure 2(a), which shows the performance of DABo in terms of micro and
macro F1 scores on the task BN → CTS when the number of iterations increases. We
can observe that in the 10th iteration, DABo achieves its best performance on the task.
However, DABo fails to discover an appropriate termination condition. By adding more
and more bootstrapped target domain data, the classification performance of DABo in
terms of micro and macro F1 scores finally drops from around 84% to around 45%.
In contrast, similar to other feature-based transfer learning approaches, our proposed
TJEq and TJE j aim to discover an optimal adaptive feature representation in one step,
which can avoid the bad-instance selection and termination issues, and thus perform
more stably on the 30 tasks.

5.6. Impact of Different Components of TJE

As introduced in Section 4, our proposed TJE consists of two main components: 1)
embedding the labels into a latent space to capture their intrinsic relationships, and
2) discovering an intermediate feature latent space underlying the source and target
domain data to reduce the domain difference. Therefore, we conduct experiments to
test the impact of each component to the overall performance of TJE. If we do not
embed the discrete labels into the latent space, then TJE is approximately reduced to
SSTCA. In addition, as mentioned above, if we set � = I, which implies to drop the
intermediate feature learning process, TJE is reduced to LE. The comparison results
among TJE, SSTCA and LE on the 30 tasks are summarized in Table VIII. In the table,
each row corresponds to the average results of different models on the five tasks with
the same target domain. For example, BC (avg.) denotes the average results of the
tasks BN → BC, NW → BC, CTS → BC, UN → BC and WL → BC. As we can see from

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

Transfer Joint Embedding for Cross-Domain Named Entity Recognition 7:21

the table, by only learning a powerful feature representation across domains, SSTCA
cannot benefit much for cross-domain NER. This is because though SSTCA can find an
feature space to reduce domain difference, it may suffer from the label imbalanced issue
by decomposing the multiclass NER task into multiple binary classification tasks. The
performance of LE shows that exploiting the relationship between classes in the latent
space is important for NER, especially when the number of positive entities is much
smaller than that of the negative ones. TJE integrates these two learning processes
into a unified framework and thus achieves the best performance in cross-domain NER.

5.7. Parameter Sensitivity Study of TJE

In the third experiment, we study the effect of different parameter settings to the
overall performance of TJE j in terms of micro and macro F1 scores. When we test the
sensitivity of one parameter, we fix the values of the other parameters. In TJE j , λ1,
λ2 and λ3 are tradeoff parameters to balance the impact of different objective terms.
Figure 3 shows the overall performance of TJE j in terms of micro and macro F1 scores
under varying values of λ1, λ2 and λ3, respectively. From the figure, we can observe
that when λ1 ≤ 10−3, λ2 ≤ 101 and λ3 ≤ 10−1, TJE j performs well and stably for most
cross-domain tasks. In Figures 4(a) and 4(b), we show the effect of different values of
the dimensionality p, which corresponds to the transfer feature mapping � ∈ R

m×p, to
the overall performance of TJE j in terms of micro and macro F1 scores. We can find
that for most tasks, when p is in the range of [300 600], TJE j performs well and stably.
In Figures 4(c) and 4(d), we show the effect of different values of the dimensionality q,
which corresponds to the label mapping V ∈ R

c×q, to the overall performance of TJE j in
terms of micro and macro F1 scores. We can observe that for most tasks, when q ≥ 30,
TJE j performs well and stably. Finally, we test the convergence property of TJE j . In
Figures 4(e) and 4(f), we show the average performance of TJE j in terms of micro and
macro F1 scores on the 30 tasks when the number of iterations increases from 1 to
30. As we can see, TJE j quickly converges to good performance in terms of micro and
macro F1 scores when T ≥ 20.

5.8. Further Empirical Analysis

In this section, in order to further understand why we propose to embed labels into a
latent space for cross-domain NER, we conduct cross-domain NER experiments on the
7 types of entities of the ACE 2005 dataset (as described in Table II). The comparison
results are presented in Tables IX and X. As we can see that though the number of
classes is reduced from 41 to 8 (including the negative type of entities), our proposed
TJE j still performs best on average of the 30 tasks. However, the improvement of TJE j
compared to SCL become much smaller than that presented in Tables VI and VII. SCL
even performs better than TJEq slightly. The reason is that for each type of entities
which contains several subtypes of entities, the number of instances is much larger
than that of a subtype. Though the cross-domain NER tasks still suffer from the class
imbalanced issue, the ratio between the numbers of entities of a positive type and
the negative type become much larger. Therefore, the benefit obtained from the label
latent space become less than that obtained from the embedding of the 41 classes. This
is similar to the reason that the improvement of LE compared to MCc and MC1vsR on
the 8 classes of entities is much smaller than that on the 41 classes of entities. The
comparison observations between Tables IX–X and Tables VI–VII suggest that when
the number of entity types gets larger, our proposed method is supposed to get better
performance compared to the other baselines. Note that the results of DABt and DABo
presented in Tables VI and VII are different from the previous results reported in Wu
et al. [2009]. The reason are two folds 1) the feature sets used to represent each term
or word are different. In this work, the features we use are the same as those used in

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

7:22 S. J. Pan et al.

−6 −5 −4 −3 −2 −1 0
0

10

20

30

40

50

60

70

80

90

log
10
λ

1

F
1−

m
ic

ro
 (

%
)

BC (avg.)
BN (avg.)
NW (avg.)
CTS (avg.)
UN (avg.)
WL (avg.)

(a) Varying values of parameter λ 1 w.r.t. F1-micro.

−6 −5 −4 −3 −2 −1 0
0

10

20

30

40

50

60

70

80

90

log
10
λ

1

F
1−

m
ac

ro
 (

%
)

BC (avg.)
BN (avg.)
NW (avg.)
CTS (avg.)
UN (avg.)
WL (avg.)

(b) Varying values of parameter λ 1 w.r.t. F1-macro.

−5 −4 −3 −2 −1 0 1 2
0

10

20

30

40

50

60

70

80

90

log
10
λ

2

F
1−

m
ic

ro
 (

%
)

BC (avg.)
BN (avg.)
NW (avg.)
CTS (avg.)
UN (avg.)
WL (avg.)

(c) Varying values of parameter λ 2 w.r.t. F1-micro.

−5 −4 −3 −2 −1 0 1 2
0

10

20

30

40

50

60

70

80

90

log
10
λ

2

F
1−

m
ac

ro
 (

%
)

BC (avg.)
BN (avg.)
NW (avg.)
CTS (avg.)
UN (avg.)
WL (avg.)

(d) Varying values of parameter λ 2 w.r.t. F1-macro.

−6 −5 −4 −3 −2 −1 0
40

45

50

55

60

65

70

75

80

85

90

log
10
λ

3

F
1−

m
ic

ro
 (

%
)

BC (avg.)
BN (avg.)
NW (avg.)
CTS (avg.)
UN (avg.)
WL (avg.)

(e) Varying values of parameter λ 3 w.r.t. F1-micro.

−6 −5 −4 −3 −2 −1 0
40

45

50

55

60

65

70

75

80

85

90

log
10
λ

3

F
1−

m
ac

ro
 (

%
)

BC (avg.)
BN (avg.)
NW (avg.)
CTS (avg.)
UN (avg.)
WL (avg.)

(f) Varying values of parameter λ 3 w.r.t. F1-macro.

Fig. 3. Performance of TJE j in terms of micro and macro F1 scores under varying values of parameters λ1,
λ2 and λ3.

our current NER system, which are state-of-the-art features for NER combining with
some features based on our feature engineering experience, and 2) in this work, we
report all the 30 cross-domain NER tasks of the ACE 2005 dataset, while in Wu et al.
[2009], only 12 of them are reported.

6. CONCLUSION AND FUTURE WORK

In this article, we propose a new transfer learning framework, named Transfer
Joint Embedding (TJE), for cross-domain multiclass classification with application
to NER. The motivation of TJE is to project both labels and features onto a same

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

Transfer Joint Embedding for Cross-Domain Named Entity Recognition 7:23

100 200 300 400 500 600 700
40

45

50

55

60

65

70

75

80

85

90

p

F
1−

m
ic

ro
 (

%
)

BC (avg.)
BN (avg.)
NW (avg.)
CTS (avg.)
UN (avg.)
WL (avg.)

(a) Varying # of dim. p w.r.t. F1-micro.

100 200 300 400 500 600 700
35

40

45

50

55

60

65

70

75

80

85

90

p

F
1−

m
ac

ro

BC (avg.)
BN (avg.)
NW (avg.)
CTS (avg.)
UN (avg.)
WL (avg.)

(b) Varying # of dim. p w.r.t. F1-macro.

10 15 20 25 30 35 41
30

40

50

60

70

80

90

q

F
1−

m
ic

ro
 (

%
)

BC (avg.)
BN (avg.)
NW (avg.)
CTS (avg.)
UN (avg.)
WL (avg.)

(c) Varying # of dim. q w.r.t. F1-micro.

10 15 20 25 30 35 41
30

40

50

60

70

80

90

q

F
1−

m
ac

ro
 (

%
)

BC (avg.)
BN (avg.)
NW (avg.)
CTS (avg.)
UN (avg.)
WL (avg.)

(d) Varying # of dim. q w.r.t. F1-macro.

0 5 10 15 20 25 30
73.6

73.7

73.8

73.9

74

74.1

74.2

74.3

74.4

T

F
1−

m
ic

ro
 (

%
)

All (avg.)

(e) Varying # of iterations T w.r.t. F1-micro.

0 5 10 15 20 25 30
71.2

71.3

71.4

71.5

71.6

71.7

71.8

T

F
−

m
ac

ro
 (

%
)

All (avg.)

(f) Varying # of iterations T w.r.t. F1-macro.

Fig. 4. Performance of TJE j under varying numbers of dimensionality p, q, and iterations T .

low-dimensional latent space, where the relationships between labels can be fully ex-
ploited, the distance in data distributions between the source and target domains can
be reduced, and the projected source domain instances are closer to their correspond-
ing label-prototypes than others. In this way, classification on the target domain test
data can be done with the simple nearest neighbor rule. We propose two solutions
for TJE by using different optimization strategies. One denoted by TJEq is based on
sequential optimization on different variables, and the other denoted by TJE j is based
on joint optimization on all variables. Experimental results on the ACE 2005 dataset
demonstrate the effectiveness of TJE.

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

7:24 S. J. Pan et al.

Table IX. All Comparison Results on Cross-Domain 7-Entity-Type NER (F1-micro, unit:%)

Target domain
F1-micro

MCi MCc MC1vsR MCh DABt DABo SCL SSTCA LE TJEq TJE j

BC (avg.) 85.14 77.34 77.97 76.42 75.69 75.55 79.25 77.39 77.70 77.73 77.81
BN (avg.) 78.96 52.39 53.96 40.10 43.73 45.55 62.13 50.53 63.18 67.13 68.88
NW (avg.) 87.97 77.68 79.29 78.42 73.57 74.57 79.26 77.41 77.45 77.83 77.89
CTS (avg.) 95.03 86.60 87.31 86.95 84.96 86.25 89.15 85.75 88.16 88.41 88.59
UN (avg.) 83.03 72.17 72.32 71.31 69.80 68.84 73.25 69.79 72.66 73.44 73.88
WL (avg.) 78.92 66.66 67.10 66.34 60.66 60.00 67.71 66.85 65.53 65.85 65.71

Avg. (all) 84.84 72.14 72.98 69.92 68.07 68.46 75.13 71.29 74.11 75.06 75.76

Table X. All Comparison Results on Cross-Domain 7-Entity-Type NER (F1-Macro, unit:%)

Target domain
F1-macro

MCi MCc MC1vsR MCh DABt DABo SCL SSTCA LE TJEq TJE j

BC (avg.) 85.14 76.17 76.77 75.77 73.29 73.15 77.71 76.05 75.50 76.07 76.32
BN (avg.) 78.96 49.73 51.29 37.28 40.07 42.37 58.01 48.26 58.83 63.95 65.81
NW (avg.) 87.97 76.03 77.52 77.00 69.83 71.50 76.76 75.58 74.90 75.58 76.17
CTS (avg.) 95.03 86.69 87.41 87.73 84.76 86.17 89.91 85.53 87.80 88.16 88.38
UN (avg.) 83.03 70.93 71.12 70.54 67.68 66.69 71.90 68.78 70.68 71.74 72.32
WL (avg.) 78.92 64.89 64.98 64.89 56.66 55.91 65.42 64.94 63.24 63.96 65.43

Avg. (all) 84.18 70.74 71.51 68.87 65.38 65.96 73.96 69.85 71.83 73.25 74.07

In the future, as discussed in Section 4.6, we will study the problem on how to encode
the hierarchical structure of the types of entities into learning the label latent space to
further boost the cross-domain NER performance. Furthermore, we plan to apply TJE
to other datasets which contains large-scale types of named entities to further verify
the effectiveness of TJE. Besides cross-domain NER, we also plan to apply TJE to solve
other cross-domain natural language processing tasks, such as cross-domain relation
extraction and cross-domain opinion extraction.

APPENDIX

A. PROOF OF PROPOSITION 4.1

PROOF. By fixing � and V, the optimization problem (14) can be written as the
following unconstrained form by dropping terms which are independent to W,

min
W

h̃(V,�, W; At, Bt) = 1
2kc

∑
(xSi ,ySi)∈At

∑
α

	((xSi , ySi , α); V,�, W) + λ1

2
‖W‖2

F . (26)

Denote

A+
t = {(xSi , ySi , α) : (xSi , ySi) ∈ At, α ∈ {1, . . . , c}, 	((xSi , ySi , α); Vt,�t, Wt) > 0}. (27)

Note that A+
t ⊆ At. The loss function 	(.) is not differentiable with respect to W on At

but differentiable on A+
t . Furthermore, 	(.) > 0 on A+

t while 	(.) = 0 on At\A+
t . It can be

proved that the subgradient of the first term on the right-hand side in (26) with respect
to W on At in the tth iteration can be written as

∇(t)
W

1
2kc

∑
(xSi ,ySi)∈At

∑
α

	((xSi , ySi , α); V,�, W) = 1
kc

∑
(xSi ,ySi)∈A+

t

��
t x�

Si
�iαVt,

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

Transfer Joint Embedding for Cross-Domain Named Entity Recognition 7:25

where �iα = φ(α) − φ(ySi). Therefore, the subgradient of h̃(·) with respect to W on At
and Bt in the tth iteration can be written as

∇(t)
W h̃(Vt,�t, Wt; At, Bt) = λ1Wt + 1

kc

∑
(xSi ,ySi)∈A+

t

��
t x�

Si
�iαVt.

The proof of the proposition is completed.

B. PROOF OF PROPOSITION 4.2

PROOF. By fixing V and W, the optimization problem (14) can be written as the
following unconstrained form by dropping terms which are independent to �,

min
�

h̃(V,�, W; At, Bt) (28)

= 1
2kc

∑
(xSi ,ySi)∈At

∑
α

	((xSi , ySi , α); V,�, W) + λ2

2
tr

(
��ϒt

1�
) + λ3

2
‖�‖2

F . (29)

Note that the loss function 	(.) is not differentiable with respect to � on At but differ-
entiable on A+

t , which is defined in (27), and 	(.) > 0 on A+
t while 	(.) = 0 on At\A+

t . It
can be proved that the subgradient of the first term on the right-hand side in (28) with
respect to � on At in the tth iteration can be written as

∇(t)
�

⎛⎝ 1
2kc

∑
(xSi ,ySi)∈At

∑
α

	((xSi , ySi , α); V,�, W)

⎞⎠ = 1
kc

∑
(xSi ,ySi)∈A+

t

x�
Si

�iαVtW�
t+1.

Therefore, the subgradient of h̃(·) with respect to � on At and Bt in the tth iteration can
be written as

∇(t)
� h̃(Vt,�t, Wt+1; At, Bt) = λ3�t + λ2ϒ

t
1�t + 1

kc

∑
(xSi ,ySi)∈A+

t

x�
Si

�iαVtW�
t+1.

This completes the proof of the proposition.

C. PROOF OF PROPOSITION 4.3

PROOF. By fixing W and �, the optimization problem (14) can be written as the
following inequality-constrained minimization problem by dropping terms which are
independent to V,

min
V

h̃(V,�, W; At, Bt) = 1
2kc

∑
(xSi ,ySi)∈At

∑
α

	((xSi , ySi , α); V,�, W) + λ2

2
tr

(
��ϒt

1�
)
,

s.t. ‖Vi‖2 ≤ 1. (30)

For solving this problem, we can use subgradient projection methods. More specifically,
we can first update V by using subgradient decent, and then project it to the set defined
by constraints. Similar to updating W and �, it can be shown that the subgradient of
h̃(·) with respect to V on At and Bt in the tth iteration can be written as

∇(t)
V h̃(Vt,�t+1, Wt+1; At, Bt) = −λ2ϒ

t
2Vt + 1

kc

∑
(xSi ,ySi)∈A+

t

(�iαVt + �iαxSi �t+1Wt+1),

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

7:26 S. J. Pan et al.

where ϒt
2 is defined in (21). Denote Vt+ 1

2
the updated values of V after applying sub-

gradient descent on the tth iteration,

Vt+ 1
2

= Vt − ηt∇(t)
V h̃(Vt,�t+1, Wt+1; At, Bt).

In order to satisfy the constraints ‖Vi‖2 ≤ 1, i ∈ {1, . . . , c}, we can post-project each row
of Vt+ 1

2
to the unit ball B = {v : v ∈ R

1×q, ‖v‖2 ≤ 1} by using the following equation,

(Vt+1)i = min

⎛⎝1,
1∥∥∥(

Vt+ 1
2

)
i

∥∥∥
2

⎞⎠ (
Vt+ 1

2

)
i.

This completes the proof of the proposition.

REFERENCES

AONE, C., HALVERSON, L., HAMPTON, T., AND RAMOS-SANTACRUZ, M. 1998. SRA: Description of the IE2 system
used for MUC-7. In Proceedings of the 7th Message Understanding Conference.

BELKIN, M. AND NIYOGI, P. 2003. Laplacian eigenmaps for dimensionality reduction and data representation.
Neural Comput. 15, 6, 1373–1396.

BEN-DAVID, S., BLITZER, J., CRAMMER, K., AND PEREIRA, F. 2007. Analysis of representations for domain adap-
tation. In Advances in Neural Information Processing Systems, vol. 19, MIT Press, Cambridge, MA,
137–144.

BENGIO, S., WESTON, J., AND GRANGIER, D. 2010. Label embedding trees for large multi-class tasks. In Advances
in Neural Information Processing Systems, vol. 23, 163–171.

BLITZER, J., DREDZE, M., AND PEREIRA, F. 2007. Biographies, bollywood, boom-boxes and blenders: Domain
adaptation for sentiment classification. In Proceedings of the 45th Annual Meeting of the Association of
Computational Linguistics. ACL, 432–439.

BLITZER, J., MCDONALD, R., AND PEREIRA, F. 2006. Domain adaptation with structural correspondence learning.
In Proceedings of the Conference on Empirical Methods in Natural Language. 120–128.

CHAWLA, N. V., BOWYER, K. W., HALL, L. O., AND KEGELMEYER, W. P. 2002. SMOTE: Synthetic minority over-
sampling technique. J. Artif. Intell. Resear. 16, 321–357.

CHEN, B., LAM, W., TSANG, I. W., AND WONG, T.-L. 2009. Extracting discriminative concepts for domain adap-
tation in text mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 79–188.

CIARAMITA, M. AND ALTUN, Y. 2005. Named-entity recognition in novel domains with external lexical knowledge.
In Proceedings of the NIPS Workshop on Advances in Strucured Learning for Text and Speech Processing.

COX, T. AND COX, M. 1994. Multidimensional Scaling. Chapman & Hall, London.
CRAMMER, K. AND SINGER, Y. 2002. On the algorithmic implementation of multiclass kernel-based vector

machines. J. Mach. Learn. Resear. 2, 265–292.
DAUMÉ III, H. 2007. Frustratingly easy domain adaptation. In Proceedings of the 45th Annual Meeting of the

Association of Computational Linguistics. ACL, 256–263.
DUMAIS, S. AND CHEN, H. 2000. Hierarchical classification of web content. In Proceedings of the 23rd Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM,
256–263.

FAN, R.-E., CHANG, K.-W., HSIEH, C.-J., WANG, X.-R., AND LIN, C.-J. 2008. LIBLINEAR: A library for large linear
classification. J. Mach. Learn. Resear. 9, 1871–1874.

FINKEL, J. R., GRENAGER, T., AND MANNING, C. 2005. Incorporating non-local information into information
extraction systems by Gibbs sampling. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics. ACL, 363–370.

FINKEL, J. R. AND MANNING, C. D. 2009. Nested named entity recognition. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing. ACL, 141–150.

GLOROT, X., BORDES, A., AND BENGIO, Y. 2011. Domain adaptation for large-scale sentiment classification:
A deep learning approach. In Proceedings of the 28th International Conference on Machine Learning.
513–520.

GRETTON, A., BORGWARDT, K. M., RASCH, M., SCHÖLKOPF, B., AND SMOLA, A. 2007. A kernel method for the two-
sample problem. In Proceedings of the Annual Conference on Neural Information Processing Systems.
MIT Press, Cambridge, MA, 513–520.

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

Transfer Joint Embedding for Cross-Domain Named Entity Recognition 7:27

GRETTON, A., BOUSQUET, O., SMOLA, A. J., AND SCHÖLKOPF, B. 2005. Measuring statistical dependence with
Hilbert-Schmidt norms. In Proceedings of the 18th International Conference on Algorithmic Learning
Theory.

HUMPHREYS, K., GAIZAUSKAS, R., AZZAM, S., HUYCK, C., MITCHELL, B., CUNNINGHAM, H., AND WILKS, Y. 1998.
Description of the University of Sheffield LaSIE-II system as used for MUC-7. In Proceedings of the 7th
Message Understanding Conference.

ISOZAKI, H. AND KAZAWA, H. 2002. Efficient support vector classifiers for named entity recognition. In Proceed-
ings of the 19th International Conference on Computational Linguistics. ACL, 1–7.

JIANG, J. AND ZHAI, C. 2006. Exploiting domain structure for named entity recognition. In Proceedings of
the Main Conference on Human Language Technology Conference of the North American Chapter of the
Association of Computational Linguistics. ACL, 74–81.

JIANG, J. AND ZHAI, C. 2007. Instance weighting for domain adaptation in NLP. In Proceedings of the 45th
Annual Meeting of the Association of Computational Linguistics. ACL, 264–271.

KRUPKA, G. R. AND HAUSMAN, K. 1998. Isoquest inc.: Description of the NetOwlTM extractor system as used
for MUC-7. In Proceedings of 7th Message Understanding Conference.

KWOK, C., ETZIONI, O., AND WELD, D. S. 2001. Scaling question answering to the web. ACM Trans. Inf. Syst.
19, 242–262.

MANNING, C. D., RAGHAVAN, P., AND SCHTZE, H. 2008. Introduction to Information Retrieval. Cambridge Univer-
sity Press, New York, NY.

MIKHEEV, A., GROVER, C., AND MOENS, M. 1998. Description of the LTG system used for MUC-7. In Proceedings
of the 7th Message Understanding Conference.

MIKHEEV, A., GROVER, C., AND MOENS, M. 1999. Named entity recognition without gazetteers. In Proceedings
of the 19th International Conference of the European Chapter of the Association for Computational
Linguistics. 1–8.

NADEAU, D. AND SEKINE, S. 2007. A survey of named entity recognition and classification. Linguisticae Inves-
tigationes 30, 1, 3–26.

PAN, S. J., KWOK, J. T., AND YANG, Q. 2008. Transfer learning via dimensionality reduction. In Proceedings of
the 23rd AAAI Conference on Artificial Intelligence. 677–682.

PAN, S. J., NI, X., SUN, J.-T., YANG, Q., AND CHEN, Z. 2010. Cross-domain sentiment classification via spectral
feature alignment. In Proceedings of the 19th International Conference on World Wide Web. ACM, 751–
760.

PAN, S. J., TSANG, I. W., KWOK, J. T., AND YANG, Q. 2011. Domain adaptation via transfer component analysis.
IEEE Trans. Neural Networks 22, 199–210.

PAN, S. J. AND YANG, Q. 2010. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 10, 1345–1359.
QUIONERO-CANDELA, J., SUGIYAMA, M., SCHWAIGHOFER, A., AND LAWRENCE, N. D. 2009. Dataset Shift in Machine

Learning. MIT Press.
RABINER, L. R. AND JUANG, B. H. 1986. An introduction to hidden Markov models. IEEE ASSP Mag. 3, 1, 4–16.
SCHUMAKER, R. P. AND CHEN, H. 2009. Textual analysis of stock market prediction using breaking financial

news: The AZFin text system. ACM Trans. Inf. Syst. 27, 12:1–12:19.
SEKINE, S., SUDO, K., AND NOBATA, C. 2002. Extended named entity hierarchy. In Proceedings of the 3rd

International Conference on Language Resources and Evaluation. 1818–1824.
SMOLA, A. J., GRETTON, A., SONG, L., AND SCHÖLKOPF, B. 2007. A Hilbert space embedding for distributions. In

Proceedings of the 18th International Conference on Algorithmic Learning Theory. 13–31.
SONG, L. 2007. Learning via Hilbert space embedding of distributions. Ph.D. thesis, University of Sydney.
WEINBERGER, K. Q. AND CHAPELLE, O. 2009. Large margin taxonomy embedding for document categorization.

In Advances in Neural Information Processing Systems, vol. 21, 1737–1744.
WHITELAW, C., KEHLENBECK, A., PETROVIC, N., AND UNGAR, L. 2008. Web-scale named entity recognition. In

Proceedings of the 17th ACM Conference on Information and Knowledge Management. ACM, 123–132.
WU, D., LEE, W. S., YE, N., AND CHIEU, H. L. 2009. Domain adaptive bootstrapping for named entity recognition.

In Proceedings of the Conference on Empirical Methods in Natural Language Processing. ACL, 1523–
1532.

ZHANG, T. 2004. Solving large scale linear prediction problems using stochastic gradient descent algorithms.
In Proceedings of the 21st International Conference on Machine Learning. ACM, 116–123.

ZHOU, G. AND SU, J. 2002. Named entity recognition using an HMM-based chunk tagger. In Proceedings of
40th Annual Meeting of the Association for Computational Linguistics. ACL, 473–480.

Received October 2011; revised July 2012, November 2012; accepted January 2013

ACM Transactions on Information Systems, Vol. 31, No. 2, Article 7, Publication date: May 2013.

